Evidence and Importance of Newborn Thermoregulation *at Birth*

Abbot Laptook MD Department of Pediatrics Warren Alpert Medical School, Brown University Medical Director, NICU Women and Infants Hospital of Rhode Island

Texas Collaborative for Healthy Mothers and Babies

Rhode Island vs Houston

Objectives

Thermal regulation at birth of preterm infants Thermo-neutral range Cold stress at birth Cold stress, gestational age, birth weight Interventions to reduced cold stress Cold stress and mortality

Editorial, Journal of Pediatrics, 1999

Thermal management of the low birth weight infant: A cornerstone of neonatology

At birth, the body temperature of the newborn infant will approximate or slightly exceed that of the mother. Within minutes of birth, however, core temperature begins to fall, particularly in infants with birth weights <1500 g. These infants have a diminished ca-

J Pediatr 1999;134:529-31. Copyright © 1999 by Mosby, Inc. 0022-3476/99/\$8.00 + 0 9/18/98202 pacity for metabolic heat production coupled with a high surface area to volume ratio and an immature epider-

See related article, p. 547.

mal barrier, leading to extraordinarily high evaporative heat losses. Consequently, low birth weight infants are highly vulnerable to the development of cold stress. In the late 1950s, Silverman et al¹ demonstrated that maintenance of body temperature through control of the thermal environment significantly reduced mortality in LBW infants. This study was subsequently replicated by other investigators with the result that thermal management became a cornerstone of the new field of neonatology.

LBW Low birth weight

Focus on thermal management of the newborn led to a series of controversial topics surrounding the broad

J Pediatr 1999;134:529-531

Effect of Temperature on Mortality of Low Birth Weight Infants

	Air Temp 28.3-29.4°C	Air Temp 31.1-32.1°C	ERD*	95% CI
Death (0 – 5 days)	29/91 (31.9%)	15/91 (16.5%)	13	3.2-22.8
Death (0-28 days)	41/91 (45.1%)	20/91 (22.0%)	23.1	9.8-36.4

*ERD: event rate difference

Silverman W, Pediatrics 1958;22:876

What about the Effects of Temperature at Birth on Mortality?

Core Body Temperature (Tc): Definition

- Physiologic appropriate range of Tc: not rigorously defined
- Infants, children, adults: Tc = 37°C
- No a-priori reason for a different Tc in newborns

Target newborn Tc = 37.0°C

- Acceptable Tc range: 36.5-37.5°C
- Tc axilla or Tc rectal: closely correlated

Ideal Thermal Conditions for a Newborn

- Maintain an acceptable Tc range
 - Achieve Tc in a thermo-neutral ambient range (environmental conditions with a minimal O₂ consumption)
 - Steady state environmental conditions

Environmental Cold stress
 Chemical regulation: 个 VO₂
 Non-shivering thermogenesis
 Thermogenic organ: brown fat

Environmental Conditions at Birth

Delivery and operating rooms:
 Non-steady state thermal conditions
 Absence of a thermoneutral environment

Newborn Temperature in the Delivery Room

Dahm Pediatrics 1972: 49;504

Why does Body Temperature Fall After Birth?

Stable temperature → thermal equilibrium Heat production = heat loss

- Metabolic processes
 - Non-shivering thermogenesis
 - $\uparrow O_2$ consumption

Evaporation
 Convection
 Conduction
 Radiant

Cold Stress at Birth

- Inevitable
- Cold stimulation has a physiological role
 - Cold stimulation of cutaneous thermoreceptors: induces respirations¹
 - Intrapartum fever: lower Apgars, hypotonia and need for PPV²
- What extent of cold stress would be expected or considered acceptable?

¹Gluckman et al, J Physiol; 1983;343:495-506 ²Lieberman et al, Pediatrics; 2000;105:8-13

Admission Temperatures Among LBW Infants: Neonatal Research Network 2002-2003

N=5,277
15 centers
BW < 1500g
Direct NICU admit

Laptook et al, Pediatrics 2007;119:e643

Relationship Between Gestational Age and BW with Admit Temperature

Gestational	n	Birth weight (gm, x±sd)	% admit temperature	
age (wks)			< 35°C	< 36°C
28	643	1088±201	9.6	38.3
27	609	977±182	10.7	41.5
26	539	840±163	13.2	44.2
25	468	751±130	20.5	57.1
24	397	655±100	33.8	64.2
<24	187	598±118	43.9	71.1

Neonatal Research Network Centers: NICU Admission Temperatures

<u>Relative to center 10</u> Mean admit temp varied:

- 1.5°C below
- 0.3°C above

Admit temp is
 modifiable

Interventions to Reduce Heat Loss and Decrease Hypothermia in Preterm Infants

<u>NRP</u>

Radiant warmer
Drying (≥ 32 wk)
Caps
Polyethylene wraps (< 32 wk)¹
Thermal mattress (< 32 wk)²
Raise room temp³

Not listed in NRP

Polyethylene caps⁴
 Heated humidified gas⁵
 Active maternal warming⁶
 Skip to skip (resource)

Skin to skin (resource limitation)⁷

¹Reilly MC et al, J Pediatr 2015;166:262; ²Chawla S et al, J Perinatol 2011;31:780 ³Duryea EL et al, Am J Ob Gyn 2016: 214:505.e1; ⁴Trevisanuto D et al, J Pediatr 2010;156:914; ⁵Meyer MP et al, J Pediatr 2015;166:245; ⁶Horn EP et al, Anesth Analg 2002;94:409; ⁷Gabriel MA et al, Acta Paediatr 2010;99:1630

Admission Temperatures Among Extreme Preterm Infants: NRN 2012-2013 vs 2002-2003

- < 29 wks</p>
- Centers common to both epochs
- Direct NICU admits
- 💠 2002-03: n = 2270
- 2012-13: n = 2083

Laptook et al, J Pediatr 2018;192:53-59

Newborn Admission Temperature

 Cold stress at birth is common among preterm infants

- The frequency and severity of cold stress increase with decreasing GA and BW
- Over a decade the extent of cold stress has been reduced
- Does it matter?

Associations Between Admission Temperature and Mortality in the NRN

- Multi-variable logistic regression
 - Adjusted for: antenatal steroids, sex, race, birth weight, intubation, Apgar at 5 min and center
- 2002-2003 (< 1500 gm BW)
 - For every 1°C decrease in admit temperature, mortality increased by 28% (OR 1.28, 95% CI, 1.16-1.41)¹
- 2012-2013 (< 34 wks GA)

For every 1°C increase in admit temperature, mortality decreased by 19% (OR 0.81, 95% CI, 0.71-0.91)²

Inverse associations: no causal inference

¹Pediatrics 2007;119:e643, ²J Pediatr 2018;192:53-59

HeLP Trial: Heat Loss Prevention in Preterm Infants

- Do occlusive wraps immediately after birth reduce mortality?
- Prospective randomized trial
- Infants 24⁰ 27⁶ wks, stratified by GA
- Primary outcome: all cause mortality (25% RRR)

Reilly MC et al, J Pediatr 2015;166:262-268

HeLP Trial: Results

Trial stopped after 50% enrollment: futility <u>Temperature (mean):</u>

- Wrap gr: 36.3°C
- Non-wrap gr: 35.7°C
 Temp distribution:

Mortality:

Wrap gr: 20.5%

Non-wrap gr: 20%

OR 0.9, 95% CI 0.6-1.3

Mortality/admit temp: inversely associated Wrapping: no benefit to reduce mortality

Admission Temperature and Mortality: Other Reports

- Inverse association between admission temperature and in-hospital mortality
 - EPICure study (< 27 wks)¹
 - California Perinatal Quality Care Collaborative (BW < 1500g)²
 - Brazilian Network of Neonatal Research (23-33 wks)³
 - Canadian Neonatal Network⁴

¹Pediatrics 2000;106:659-671, ²JPerinatol 2011;31(suppl 1):S49-56, ³JPediatr 2014;164:271-275,e1, ⁴JAMA Pediatr 2015;169(4):e150277

Association of Admission Temperature with a Composite Mortality/Morbidity Outcome

Canadian Neonatal Network

Inborns, n=9,833, < 33 wks
Composite adv outcome:
Mortality or Neuro injury, ROP, NEC, BPD, LOS
U shaped association
Nadir admit temp: 36.8°C

Lyu V et al, JAMA Pediatr 2015;169(4):e150277

Conclusions

- Thermal regulation is a fundamental principle in care of newborns at birth and in the NICU
- Cold stress is common at birth
 - A little: necessary, stimulates respirations
 - Too much: inverse association with mortality
 - Associations with mortality: causal vs a marker
- Admission temperature: modifiable
 - Vigilance for hyperthermia

